Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400188, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743506

RESUMEN

Plastics, omnipresent in the environment, have become a global concern due to their durability and limited biodegradability, especially in the form of microparticles and nanoparticles. Polystyrene (PS), a key plastic type, is susceptible to fragmentation and surface alterations induced by environmental factors or industrial processes. With widespread human exposure through pollution and diverse industrial applications, understanding the physiological impact of PS, particularly in nanoparticle form (PS-NPs), is crucial. This study focuses on the interaction of PS-NPs with model blood proteins, emphasising the formation of a protein corona, and explores the subsequent contact with platelet membrane mimetics using experimental and theoretical approaches. The investigation involves αIIbß3-expressing cells and biomimetic membranes, enabling real-time and label-free nanoscale precision. By employing quartz-crystal microbalance with dissipation monitoring studies, the concentration-dependent cytotoxic effects of differently functionalised ~210 nm PS-NPs on HEK293 cells overexpressing αIIbß3 are evaluated in detail. The study unveils insights into the molecular details of PS-NP interaction with supported lipid bilayers, demonstrating that a protein corona formed in the presence of exemplary blood proteins offers protection against membrane damage, mitigating PS-NP cytotoxicity.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38741563

RESUMEN

Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.

3.
Nat Commun ; 15(1): 1674, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395951

RESUMEN

The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Acetilación , NAD/metabolismo , Expresión Génica , Fosfatos/metabolismo
4.
Materials (Basel) ; 16(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37512356

RESUMEN

Plastic waste is a global issue leaving no continents unaffected. In the environment, ultraviolet radiation and shear forces in water and land contribute to generating micro- and nanoplastic particles (MNPP), which organisms can easily take up. Plastic particles enter the human food chain, and the accumulation of particles within the human body is expected. Crossing epithelial barriers and cellular uptake of MNPP involves the interaction of plastic particles with lipids. To this end, we generated unilamellar vesicles from POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) and incubated them with pristine, carboxylated, or aminated polystyrene spheres (about 1 µm in diameter) to generate lipid coronas around the particles. Lipid coronas enhanced the average particle sizes and partially changed the MNPP zeta potential and polydispersity. In addition, lipid coronas led to significantly enhanced uptake of MNPP particles but not their cytotoxicity, as determined by flow cytometry. Finally, adding proteins to lipid corona nanoparticles further modified MNPP uptake by reducing the uptake kinetics, especially in pristine and carboxylated plastic samples. In conclusion, our study demonstrates for the first time the impact of different types of lipids on differently charged MNPP particles and the biological consequences of such modifications to better understand the potential hazards of plastic exposure.

5.
Arch Pharm (Weinheim) ; 356(10): e2300087, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507825

RESUMEN

The biological properties of pentathiepins have been attracting increased attention in recent years. Experiments have shown a wide range of effects of pentathiepins in vitro, such as induction of apoptosis and alteration of mitochondrial membrane potential in cancer cells, and inhibition of antioxidant enzymes, for example, glutathione peroxidase 1 (GPx1). Biological evaluation is sometimes limited due to low aqueous solubility, high lipophilicity, and poor stability toward thiols, for example, glutathione (GSH). To assess whether liposomes are suitable as drug carriers to overcome these drawbacks, a model pentathiepin was formulated in a liposomal preparation. The success of loading liposomes with pentathiepins was evaluated by using ultraviolet-visible light (UV-Vis) spectroscopy, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC). Through inclusion into 100-nm-sized 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes, the aqueous solubility of a representative pentathiepin could be increased by several orders of magnitude to ca. 400 µM. The stability of the pentathiepin in the presence of GSH was increased fourfold as determined by UV-Vis spectroscopy. In antiproliferation experiments with two human cancer cell lines, no decrease in potency in the liposomal loaded pentathiepin compared to the free pentathiepin was found. In conclusion, liposomes are a suitable carrier for pentathiepins and improve both solubility and stability in the presence of thiols without compromising anticancer activity.


Asunto(s)
Glutatión , Liposomas , Humanos , Liposomas/química , Solubilidad , Relación Estructura-Actividad , Compuestos de Sulfhidrilo
6.
Environ Microbiol ; 25(9): 1713-1727, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121608

RESUMEN

Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.


Asunto(s)
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polisacáridos/metabolismo , Flavobacteriaceae/genética , Genómica
7.
Biochemistry ; 62(2): 535-542, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36598875

RESUMEN

Kazal inhibitors hold high potential as scaffolds for therapeutic molecules, taking advantage of the easily exchangeable canonical binding loop. Different Kazal inhibitor backbones have been suggested to be therapeutically useful, but the impact of different Kazal-like scaffolds on binding properties is still largely unknown. Here, we identified trypsin-targeting human serine protease inhibitor Kazal type 1 (SPINK1) homologues in different mammalian species that cluster in two P2-P1 combinations, implying the coevolution of these residues. We generated loop exchange variants of human SPINK1 for comparison with Kazal inhibitors from related species. Using comprehensive biophysical characterization of the inhibitor-enzyme interactions, we found not only affinity but also pH resistance to be highly backbone-dependent. Differences are mostly observed in complex stability, which varies by over one order of magnitude. We provide clear evidence for high backbone dependency within the Kazal family. Hence, when designing Kazal inhibitor-based therapeutic molecules, testing different backbones after optimizing the canonical binding loop can be beneficial and may result in increased affinity, complex stability, specificity, and pH resistance.


Asunto(s)
Inhibidor de Tripsina Pancreática de Kazal , Animales , Humanos , Mamíferos , Tripsina/química , Inhibidor de Tripsina Pancreática de Kazal/química
8.
Macromol Biosci ; 23(8): e2200464, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36707930

RESUMEN

Polystyrene is one of the most widely used plastics. This article reports on the interaction of 50 and 210 nm polystyrene nanoparticles (PSNPs) with human serum albumin (HSA) and transferrin (Tf), as well as their effect on supported lipid bilayers (SLBs), using experimental and theoretical approaches. Dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements show that the increase in diameter for the PSNP-protein bioconjugates depends on nanoparticle size and type of proteins. The circular dichroism (CD) spectroscopy results demonstrate that the proteins preserve their structures when they interact with PSNPs at physiological temperatures. The quartz crystal microbalance (QCM) technique reveals that PSNPs and their bioconjugates show no strong interactions with SLBs. On the contrary, the molecular dynamics simulations (MDS) show that both proteins bind strongly to the lipid bilayer (SLBs) when compared to their binding to a polystyrene surface model. The interaction is strongly dependent on the protein and lipid bilayer composition. Both the PSNPs and their bioconjugates show no toxicity in human umbilical vein endothelial (HUVEC) cells; however, bare 210 nm PSNPs and 50 nm PSNP-Tf bioconjugates show an increase in reactive oxygen species production. This study may be relevant for assessing the impact of plastics on health.


Asunto(s)
Nanopartículas , Corona de Proteínas , Humanos , Membrana Dobles de Lípidos/química , Poliestirenos/química , Corona de Proteínas/química , Nanopartículas/química , Plásticos
9.
J Biomol Struct Dyn ; 41(17): 8201-8214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36271641

RESUMEN

Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening disease. One hallmark is severe ADAMTS13 deficiency, causing ultra-large von Willebrand factor (VWF) multimers to accumulate, leading to microthrombi and lastly to microangiopathic hemolytic anemia and severe thrombocytopenia. Despite great success in recent decades, the molecular picture of the interaction between VWF and ADAMTS13 remains vague. Here, we utilized modern replica-exchange molecular dynamics simulations with the TIGER2h method to sample a vast configurational space of the isolated ADAMTS13-MDTCS domains and the exposure to its substrate and activating cofactor - the unraveled VWF-A2 domain. The sampling of binding sites and conformations was guided and filtered in agreement with available experimental evidence. We provide comprehensive information on exosites for each domain and direct pairs of interacting amino acids, for the first time. The major binding cluster for the active site of the MP domain contrasts the previous mapping of VWF-A2 residues and reciprocal binding pockets. Two major binding modes are revealed and provide access to conformational changes of an extended gatekeeper tetrad upon overcoming local latency during substrate binding and to a dedicated recruitment mechanism. Our work adds the first molecular interaction model that places previous experimental results in perspective to better understand disease-related mutations towards improved therapies. Numerous empirical targets are proposed to verify the given binding modes, to refine the overall picture of MP binding pockets, the role of Dis binding in MP activation and the passage of the Cys-rich domain through VWF-A2, thus deepening the understanding of a highly dynamic interplay.Communicated by Ramaswamy H. Sarma.

10.
Sci Rep ; 12(1): 16643, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198715

RESUMEN

Understanding the nanoparticle-cell interactions in physiological media is vital in determining the biological fate of the nanoparticles (NPs). These interactions depend on the physicochemical properties of the NPs and their colloidal behavior in cell culture media (CCM). Furthermore, the impact of the bioconjugates made by nanoparticle with proteins from CCM on the mechanical properties of cells upon interaction is unknown. Here, we analyzed the time dependent stability of gold nanoparticles (AuNPs) functionalized with citrate, dextran-10, dextrin and chitosan polymers in protein poor- and protein rich CCM. Further, we implemented the high-throughput technology real-time deformability cytometry (RT-DC) to investigate the impact of AuNP-bioconjugates on the cell mechanics of HL60 suspension cells. We found that dextrin-AuNPs form stable bioconjugates in both CCM and have a little impact on cell mechanics, ROS production and cell viability. In contrast, positively charged chitosan-AuNPs were observed to form spherical and non-spherical aggregated conjugates in both CCM and to induce increased cytotoxicity. Citrate- and dextran-10-AuNPs formed spherical and non-spherical aggregated conjugates in protein rich- and protein poor CCM and induced at short incubation times cell stiffening. We anticipate based on our results that dextrin-AuNPs can be used for therapeutic purposes as they show lower cytotoxicity and insignificant changes in cell physiology.


Asunto(s)
Quitosano , Nanopartículas del Metal , Biopolímeros , Técnicas de Cultivo de Célula , Quitosano/química , Citratos , Ácido Cítrico , Dextranos , Dextrinas , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Polímeros , Especies Reactivas de Oxígeno
11.
ACS Appl Bio Mater ; 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977081

RESUMEN

Biofilms are multicellular communities of microbial cells that grow on natural and synthetic surfaces. They have become the major cause for hospital-acquired infections because once they form, they are very difficult to eradicate. Nanotechnology offers means to fight biofilm-associated infections. Here, we report on the synthesis of silver nanoparticles (AgNPs) with the antibacterial ligand epigallocatechin gallate (EGCG) and the formation of a lysozyme protein corona on AgNPs, as shown by UV-vis, dynamic light scattering, and circular dichroism analyses. We further tested the activity of EGCG-AgNPs and their lysozyme bioconjugates on the viability of Bacillus subtilis cells and biofilm formation. Our results showed that, although EGCG-AgNPs presented no antibacterial activity on planktonic B. subtilis cells, they inhibited B. subtilis biofilm formation at concentrations larger than 40 nM, and EGCG-AgNP-lysozyme bioconjugates inhibited biofilms at concentrations above 80 nM. Cytotoxicity assays performed with human cells showed a reverse trend, where EGCG-AgNPs barely affected human cell viability while EGCG-AgNP-lysozyme bioconjugates severely hampered viability. Our results therefore demonstrate that EGCG-AgNPs may be used as noncytotoxic antibiofilm agents.

12.
J Chem Inf Model ; 62(17): 4200-4209, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36004729

RESUMEN

Replica exchange molecular dynamics simulations are one of the most popular approaches to enhance conformational sampling of molecular systems. Applications range from protein folding to protein-protein or other host-guest interactions, as well as binding free energy calculations. While these methods are computationally expensive, highly accurate results can be obtained. We recently developed TIGER2hs, an improved version of the temperature intervals with global exchange of replicas (TIGER2) algorithm. This method combines the replica-based enhanced sampling in an explicit solvent with a hybrid solvent energy evaluation. During the exchange attempts, bulk water is replaced by an implicit solvent model, allowing sampling with significantly less replicas than parallel tempering (REMD). This enables accurate enhanced sampling calculations with only a fraction of computational resources compared to REMD. Our latest results highlight several issues with sampling imbalance and parameter sensitivity within the original TIGER2 exchange algorithms that affect the overall state populations. A high sensitivity on replica number and maximum temperature is eliminated by changing to a pairwise exchange kernel (PE) without additional sorting. Simulations are controlled by adjusting the average temperature change per exchange ⟨ΔT/χ⟩ to below 30 K to mimic a controlled temperature mixing of replicas similar to REMD. Thus, this parameter provides an applicable property for selecting combinations of replica number and maximum temperature to adjust simulations for best accuracy, with flexible resource investment. This increases the robustness of the method and ensures results in excellent agreement with REMD, as demonstrated for three different peptides.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Péptidos/química , Pliegue de Proteína , Proteínas/química , Solventes/química , Temperatura
13.
J Inflamm Res ; 15: 3633-3642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35775010

RESUMEN

Objective: The pathophysiological mechanisms underlying chronic pancreatitis (CP) are still poorly understood. Human cationic (TRY1) and anionic (TRY2) trypsins are the two major trypsin isoforms and their activities are tightly regulated within pancreatic acinar cells. Typically, they exist in a molar ratio of 2:1 (cationic:anionic). This ratio is reversed during chronic alcohol abuse, pancreatic cancer, or pancreatitis due to selectively upregulated expression of TRY2, causing anionic trypsin to become the predominant isoform. The involvement of TRY2 in pancreatitis is considered limited due to the absence of disease-causing mutations and its increased prevalence for autoproteolysis. However, exacerbated pancreatitis in TRY2 overexpressing mice was recently demonstrated. Here, we aim to elucidate the molecular structure of human anionic trypsin and obtain insights into the autoproteolytic regulation of tryptic activity. Methods: Trypsin isoforms were recombinantly expressed in E. coli, purified and refolded. Enzymatic activities of all trypsin isoforms were determined and crystals of TRY2 were grown using the vapor-diffusion method. The structure was solved by molecular replacement and refined to a resolution of 1.7 Å. Equilibration molecular dynamics simulations were used to generate the corresponding TRY1-TRY1 model. Results: All trypsin isoforms display similar kinetic properties. The crystal structure of TRY2 reveals that the enzyme crystallized in the autoproteolytic state with Arg122 placed in the S1 binding pocket and the corresponding loop cleaved. The TRY2-TRY2 dimer confirms a previously hypothesized autoinhibitory state with an unexpectedly large binding interface. Conclusion: We provide a structure of TRY2, which is the predominant trypsin isoform in chronic pancreatitis and pancreatic cancer. A proposed autoinhibition mode was confirmed and the structural basis of the autoproteolytic failsafe mechanism elucidated.

14.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408828

RESUMEN

(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.


Asunto(s)
Pancreatitis Crónica , Inhibidor de Tripsina Pancreática de Kazal , Escherichia coli , Predisposición Genética a la Enfermedad , Humanos , Mutación , Pancreatitis Crónica/genética , Tripsina/genética , Inhibidor de Tripsina Pancreática de Kazal/genética
15.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946663

RESUMEN

Zinc finger proteins play pivotal roles in health and disease and exert critical functions in various cellular processes. A majority of zinc finger proteins bind DNA and act as transcription factors. B-cell lymphoma/leukemia 11B (BCL11B) represents one member of the large family of zinc finger proteins. The N-terminal domain of BCL11B was shown to be crucial for BCL11B to exert its proper function by homodimerization. Here, we describe an easy and fast preparation protocol to yield the fluorescently tagged protein of the recombinant N-terminal BCL11B zinc finger domain (BCL11B42-94) for in vitro studies. First, we expressed fluorescently tagged BCL11B42-94 in E. coli and described the subsequent purification utilizing immobilized metal ion affinity chromatography to achieve very high yields of a purified fusion protein of 200 mg/L culture. We proceeded with characterizing the atypical zinc finger domain using circular dichroism and size exclusion chromatography. Validation of the functional fluorescent pair CyPet-/EYFP-BCL11B42-94 was achieved with Förster resonance energy transfer. Our protocol can be utilized to study other zinc finger domains to expand the knowledge in this field.


Asunto(s)
Escherichia coli/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Recombinantes de Fusión , Proteínas Represoras , Proteínas Supresoras de Tumor , Escherichia coli/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Humanos , Dominios Proteicos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Represoras/biosíntesis , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/aislamiento & purificación , Dedos de Zinc
16.
Chemistry ; 27(59): 14702-14710, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34375468

RESUMEN

Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2 ) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation.


Asunto(s)
Oxígeno Singlete , Triptófano , Oxígeno , Fosfolipasas A2 , Unión Proteica , Triptófano/metabolismo
17.
Biophys J ; 120(15): 3103-3111, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34197799

RESUMEN

Lipid rafts are discrete, heterogeneous domains of phospholipids, sphingolipids, and sterols that are present in the cell membrane. They are responsible for conducting cell signaling and maintaining lipid-protein functionality. Redox-stress-induced modifications to any of their components can severely alter the mechanics and dynamics of the membrane causing impairment to the lipid-protein functionality. Here, we report on the effect of sphingomyelin (SM) in controlling membrane permeability and its role as a regulatory lipid in the presence of nitric oxide (NO). Force spectroscopy and atomic force microscopy imaging of raft-like phases (referring here to the coexistence of "liquid-ordered" and "liquid-disordered" phases in model bilayer membranes) prepared from lipids: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC):SM:cholesterol (CH) (at three ratios) showed that the adhesion forces to pull the tip out of the membrane increased with increasing SM concentration, indicating decreased membrane permeability. However, in the presence of NO radical (1 and 5 µM), the adhesion forces decreased depending on SM concentration. The membrane was found to be stable at the ratio POPC:SM:CH (2:1:1) even when exposed to 1 µM NO. We believe that this is a critical ratio needed by the raft-like phases to maintain homeostasis under stress conditions. The stability could be due to an interplay existing between SM and CH. However, at 5 µM NO, membrane deteriorations were detected. For POPC:SM:CH (2:2:1) ratio, NO displayed a pro-oxidant behavior and damaged the membrane at both radical concentrations. These changes were reflected by the differences in the height profiles of the raft-like phases observed by atomic force microscopy imaging. Malondialdehyde (a peroxidation product) detection suggests that lipids may have undergone lipid nitroxidation. The changes were instantaneous and independent of radical concentration and incubation time. Our study underlines the need for identifying appropriate ratios in the lipid rafts of the cell membranes to withstand redox imbalances caused by radicals such as NO.


Asunto(s)
Óxido Nítrico , Esfingomielinas , Membrana Celular , Colesterol , Membrana Dobles de Lípidos , Microdominios de Membrana , Fosfatidilcolinas
18.
Membranes (Basel) ; 11(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209233

RESUMEN

The study of the platelet receptor integrin αIIbß3 in a membrane-mimetic environment without interfering signalling pathways is crucial to understand protein structure and dynamics. Our understanding of this receptor and its sequential activation steps has been tremendously progressing using structural and reconstitution approaches in model membranes, such as liposomes or supported-lipid bilayers. For most αIIbß3 reconstitution approaches, saturated short-chain lipids have been used, which is not reflecting the native platelet cell membrane composition. We report here on the reconstitution of label-free full-length αIIbß3 in liposomes containing cholesterol, sphingomyelin, and unsaturated phosphatidylcholine mimicking the plasma membrane that formed supported-lipid bilayers for quartz-crystal microbalance with dissipation (QCM-D) experiments. We demonstrate the relevance of the lipid environment and its resulting physicochemical properties on integrin reconstitution efficiency and its conformational dynamics. We present here an approach to investigate αIIbß3 in a biomimetic membrane system as a useful platform do dissect disease-relevant integrin mutations and effects on ligand binding in a lipid-specific context, which might be applicable for drug screening.

19.
Adv Sci (Weinh) ; 8(10): 2003395, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026437

RESUMEN

Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inflamación/inmunología , Melanoma/tratamiento farmacológico , Ovalbúmina/inmunología , Gases em Plasma/química , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inflamación/metabolismo , Activación de Linfocitos/inmunología , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/química , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
20.
J Inflamm Res ; 14: 2111-2119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054303

RESUMEN

PURPOSE: Although strongly related, the pathophysiological effect of the N34S mutation in the serine protease inhibitor Kazal type 1 (SPINK1) in chronic pancreatitis is still unknown. In this study, we investigate the conformational space of the human cationic trypsin-serine protease inhibitor complex. METHODS: Simulations with molecular dynamics, replica exchange, and transition pathway methods are used. RESULTS: Two main binding states of the inhibitor to the complex were found, which explicitly relate the influence of the mutation site to conformational changes in the active site of trypsin. CONCLUSION: Based on our result, a hypothesis is formulated that explains the development of chronic pancreatitis through accelerated digestion of the mutant by trypsin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...